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ON LAMINAR PRESEPARATION.FLOW* 

E.V. BOGDANOVA and O.S. RYZHOV 

The boundary layer of an incompressible fluid in the domain ahead of the 
departure of the free streamline fram the surface of a smooth body or a 
break-point of its generator, is considered. The potential of the external 
irrotational velocity field is taken from the theory of jet flows. It is 
assumed with respect to the initial value of the surface friction that its 
order can vary over a wide range, while remaining finite, or taking 
extremely large values. The boundary layer in the preseparation domain 
always admits of a unified mathematical treatment, in which the initial 
surface friction plays the role of a parameter. 

1. External potential flow. For measuring both the independent and the required 
quantities we take a system of units in which the basis quantities are the radius of curvature 
of the body generator at the point of separation, the velocity of the external potential flow 
at this point, and the fluid density. Changing to dimensionless variables, we direct the s 
axis of the curvilinear orthogonal system of coordinates along the body generator, and the n 
axis along the normal to it. Let u', v'bethecomponentsofthedisturbingvelocityvector,and p' 
the excess pressure in the external potential flow domain. In accordance with the linearized 
form of the Bernoulli integral, u'= -p’, while the complex velocity is -(p' + iv'). By the 
theory of jet flows of an ideal incompressible fluid, we know that, in the neighbourhood of 
the departure point of the free streamline fran the body /l/ 

p’ + iv’ = ibr,,& + ih,,z’l~ + . . . , z=s-+-in (1.i) 
When arg 2 --f 0, the pressure p’+O, whereas 

v'= bl,,S'~~ + b&j* + . . . 0.2) 
If argz+x, then v'+O, while 

p’+-ba,,(-s)‘/*+ba,,(--)‘/a+... $3) 
In accordance with (1.21, the equation of the free streamline is 

n = + bt,,.s*J~ + 4 b&l8 + . . . 

*Prikl.Hatem.I4ekhan.,50,3,394-402,1986 

(1.4) 
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It was shown by Sychev /2/ that, for the boundary layer when the flow past the body is 

poor, the constant b,,* is positive and of the order of R-“16, where R is the Reynolds number. 
This estimate implies justification of the so-called Brillouin-Ville condition, according to 

which, in the limit as R-m, the curvature of the free streamline at the point of departure 

from the body is equal to the curvature of the body contour. For, see (1.4), the curvature 

of the fluid jet enveloping the body then following the boundary of the stagnant zone, 

remains continuous at the point s=O as b,/? - 0. 

The possibility of applying the results of jet theory to a local description of the 

velocity field on separation was also studied by Messiter and Enlow /3/, and led them to the 

incorrect claim that b,,, =0 for any large (but nowhere infinite) Reynolds number. In their 

expansion of the complex velocity, the series in half-integral powers of z started with a 

term proportional to ~~'2. Later calculation of this term /4, 5/ did not change Sychev's 

conclusions. 

The constants b,,, and b3,, of '(1.1) are determined by the global flow picture, which may 

in fact be cavitational. In the latter case their values are changed on changing from one 

model to another, though the changes are slight /6/. In the context of local theory, aimed 

at constructing the velocity field close to the separation of the flow from the body surface, 

both constants have to be specified in such a way that account is taken of the typical 

situations that arise in the flow past obstacles of different shape, in which the conditions 

of boundary layer formation in the preseparation zone may prove to be very different from 

case to case. 

2. Transformation of the Prandtl equations. Denoting the transverse coordinate 

and stream function, normalized in the usual way, for the boundary layer, by N and Y re- 

spectively, we write 

sly av BY aayr a=4 W 
aNm-as aN'=w--ds (2.1) 

where the excess pressure p' is given by (1.3). We shall assume that the constant bj,, in it 

can have either sign, while the constant b,,,- 1 is positive. A further parameter is extremely 

important for describing the boundary layer, namely, the characteristic size of the surface 

friction h. Henceforth, the constants b,,,and h are assumed to be subject to at least one of 

the two inequalities 1 b,,, 1 <I, or h>i. 

When jb,,,1<1 and h- 1, the Prandtl equation in canonical form (2.1) is initial. 

But when / bl,, I- 1 and h>l, we first have to change the independent variables and the 

required stream function in it, since the effective thickness of the boundary layer is 

greatly reduced. The key to this change is the invariance of (2.1) (with the derivative 

dp’lds neglected) under the two-parameter group of similarity transformations 

s = ax, N = fiy,, Y = Ha, y = afr’ (2.2) 

Putting a = h+, p = h-l, with the resulting equation y = h-i, we find that, in the new 

variables, the characteristic size of the surface friction is unity, while the excess pressure 

is 
p' = h-1 [ - b,,, (- r)l’z + h-8ba,, (- 2)“’ + . . .] (2.3) 

We shall assume that the changes (2.2) have been made, i.e., we have changed to a system 

of measuring units in which alltheboundary layer parameters retain finite values, while the 

excess pressure is small. 

3. Viscous flow in the wall layer. Due to the singularity in the pressure gradient 

given by (2.3), the boundary layer has to be divided into two domains: its main thickness, 
and the thin layer immediately adjacent to the wall /2, 3/. In the first domain the flow 

can be regarded as locally inviscid, while in the second, if we ignore viscous tangential 

stresses, we cannot satisfy the condition of fluid adhesion on the solid surface. To isolate 

the main term in the expression for the pressure, with any values of b%,, and h, it is natural 

to make the extension z = 1 bs,, Ih-‘s, of the longitudinal coordinate, after which we introduce 

the transverse coordinate ys and stream function qs for the velocity field in the viscous 

sublayer by 
yz = 1 bx,, I’/8 h-‘$3, $2 = 1 ba,, )‘I. h-=l+g (3.1) 

In these variables, (2.1) becomes 

t3.2) 

Since the normalized excess pressure pr is given by 

p'.= 1 bs,, I’/1 h-"*pl, pl = - sign bsl, (-.x1)‘/* + bal,h-a (- xl)‘/* + . . . (3.3) 
it is obvious thatthe term with its gradient on the right-hand side of (3.2) is small, not 

only with I ba,,\<i and hi- 1, but also with 1 by,l- i and 151. This property, which 
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is justified afresh by the invariance of the Prandtl equation (without the derivative dp’/dx) 
under the group of similarity transformations, enables the solution of (3.2) to be expressed 
by means of the asymptotic sequence 

$3=%&a + lb, 1". A-'l* [$P(51* Ys) + J.-YPhr Ys)] + bQP(Sl, Ys) -I- . . * (3.4) 

Here, the constant bs, can be chosen arbitrarily, as will be seen below; the term with 

the function PI,) 9% has to preserved, if h.- 1. Without specially isolating the last case, 

each of the terms @", m = Iis, aie, 6\3 in (3.41 will be represented by the equation 

@+=(- zr)"I(m)(E)* & =(- x&V* y, (3.5) 

The ordinary differential equation for f(m) is 

mfcm) = m6, 

where 6, = sign bs,, for m = lla, 6, = -b.,, for m = sJ, and S,,, = 0 for m = Vs. The boundary 
conditions 

f’“’ = dfWdE = 0 for 5 = 0 (3.7) 

for Eq.(3.6) are obtained from the fluid/body adhesion condition. Moreover, there must be no 
terms in the solution which increases exponentially as g+ m, 

Differentiating (3.61 and substituting @ml = ~f~m~~d~=, we find, following 131, that the 
new required quantity, regarded as the function n = W9, satisfies the homogeneous equation 

q d%(am’ j (_$._q)_!&$+(m-+)g(n)=O 

Subsituting (3.7) into (3.61, we obtain the boundary condition 
dgC”/dq = 3-‘lam&q-‘Ia as 11 -+ 0 (3.9) 

for Eqe(3.8). To eliminate the exponential increase in the solution at infinity, we put 

gem) = A,,,Y (Va - m, Vs; q) (3.10) 

with the Tricomi Y-function /7/ on the right-hand side. As n-+001 we have 

g(m)= d,fqm+* -(1 - m)(a/s- mfqm-'18 + . ..I (3.11) 

Denoting by I' and Q, respectively the Euler gamma function and the confluent hyper- 
geometric function, we rewrite (3.10) as 171 

Since Q, = 1 for Q = 0, boundary condition (3.9) gives 

For m. = ‘la, V, , (3.13) gives the constants 

(3.13) 

on recalling that 6, = sign bs,, for m = ‘I, and 6, = -bal,,, for m = 8/ts iiowever, with 6, = 0 
we can only obtain a non-trivial value of the constant A,in the case when 

m = Ts -!- N, N = 0, 1, 2, . . . (3.15) 

The first eigenvalue of spectrum (3.15) is m= a/,, which generates the eigenfunction 
gc*/*, zz 1, corresponding to a shift in the initial surface friction h,and hence is of no 
interest. The second eigenvalue m =r6is justifies the introduction into expansion (3.4) of 
the term proportional to the constant b*,, Since this constant is not contained in the external 
expansion (l.l)-(1.4) for the potential flow, we put A./,= -a/a. Then, the second eigen- 
function is g?lJ = 1 - a/rq, and corresponding to it we have 

f’/” = ‘/* (g - ‘/6&b) 

which gives a typical velocity field for a boundary layer with zero pressure gradient. 
Substituting the values (3.14) of the constantsA*/,and ASI, into (3.121, we can find the 

surface friction T, acting on the body. In our dimensionless normalized variables: 
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It remains to find the behaviour of the fluid parameters on the outer edge Y8-+ co of 
the viscous sublayer, whence we can find the conditions for union with the stream function &. 

Returning to (3.5) and (3.11), we have 

where Bal,and Bol, are constants which arise on integrating gC" with m = 'iz, V,. 

4. The main thickness of the boundary layer. Transforming in the Prandtl 
equation to the variables xI,y2,& and recalling (3.3) for the excess pressure, we write it 
as 

As distinct from (3.21, both the coefficients of the terms on the right-hand side are 
expressible in terms of the ratio [bl,,]lh, which tends to zero, both when ih,~,f<<i and h N 1, 
and when Ibl,,I-1 and h,)1. Under this condition, the principal feature in (4.1) becomes 
the operator on the left-hand side, generated by taking account of the inertia forces in the 
Prandtl equation, while the contributions fromthepressure gradient and the viscous tangential 
stresses are small. In order to be able to satisfy the condition for union of 92 with the 
stream function for the narrow wall sublayer, with / bxi, I/h< 1 it is natural to seek the 
solution as the asymptotic sequence 

9% = M") (~2) -t- I bl/, I A-%r (2~ YS) + I 61, I"* X (4.2) 
h-Wes (x1, ~8) + I bl/, W-'%ac (srr YJ + . . . 

Substituting (4.2) into (4.11, we find 

where the function *r(O) is left arbitrary. The index l= 2, for which '41 = d+&@)Jdy35, 
distinguishes the regular term in the solution of the Prandtl equation. It is obvious in 
advance that, with 1= 3, the right-hand side Y1 = 0, so that &a is in essence the eigen- 
function defined by the inertia forces of the operator on the left-hand side of (4.1). 
Finally, corresponding to the singularities in the pressure gradient (3.3) we have the index 
1=4 with '%!z = -dp&f~~. 

We seek the solution of Eqs.f4.3) as the expansions 

i44.4) 

with respect to the longitudinal coordinate. Like %@J); we choose *&) arbitrarily, while 
the remaining functions on the right-hand sides of (4.4) satisfy the ordinary differential 
equations 

(4.5) 

where the right-hand sides Yi@Q are evaluated from \yt of (4.3). 
It is clear from the first of Eqs. (3.1) that the variable g-+0 if we fix y, - 1. 

Conversely, let y,- 4 be assumed given; then ys+w. These relations show how the solutions 

*a tr,V a1 and *a(sl,yll) must be united for the two domains into which the boundary layer 
splits up. Using the second of Eqs.(3.1), relation (3.17) first establishes the limits 

to which the functions *,rrto) and j&*), which have been left arbitrary, tend as y,-+O. The 
first of Eqs.(4.6) shows that the constant ba,, = [b~l, lh;lB~l, with Bs/,- 1. when h>i, the 
second term on its right-hand side becomes small compared with the others, and can be omitted. 

The regular term in'the solution of the Prandtl equation is fixed by the limit 
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(4.7) 

The eigenfunctions of the operator, defined by the inertia forces, on the left-hand side 
of (4.1) have the limits 

('I$ _ (pas - BII, signtqga + . . . , I&/‘) = - B,,,b.,,h-3ya + . . . 

Finally, the limiting expressions of the functions due to the singularities in the 
pressure gradient are 

In the case 

&/"=(-_)signbr,+..., $;k) = b., A-$ I + . . . (4.9) 

h>l I the first term on the right of (4.7) can be neglected, and in 

(4.8) 

addition, the limits of $,,,C13, $,('I:) as ya+ 0 can be assumed to be zero. This is equivalent 
to neglecting, right from the start, the term with (-zr)": in relation (3.3) for the excess 
pressure. If ba,, < 1 and h- 1, then all the terms in the limit relations (4.6)-(4.9) are 
of the same order, though this does not change our conclusions for the flow domain considered, 
which are based on Sychev's analysis /2/. 

The solution of Eq.(4.5) which satisfies condition (4.7) is 

The integrals of Eq.(4.5), which turn into linear functions (4.8) as y*+O, are 

Solving Eq.(4.5) with limiting values (4.9), we obtain 

(4.10) 

(4.11) 

(4.12) 

Eqs.(4.10)-(4.12) complete the construction of the velocity field in the basic thickness 
of the boundary layer. It must be said that the quantities $,,('M, $&J, introduced by Eqs. 
(4.11), though due tothepresence of singularities in the external pressure distribution, 
are formally eigenfunctions of the operator of inertia forces onthe left-hand side of (4.1). 

5. The non-linear domain. We return to Eq.(3.16) forthe surface friction, which 
shows that, when (-x1)- Ibt,tlsh-6 the first correction term on the right-hand side becomes 
of order unity. This characteristic size is inherent in the non-linear domain, where our 
above analysis loses its force. We mark all the quantities in this domain with a bar, and 
in accordance with our remark, we normalize the longitudinal coordinate as follows: 

z1 = 1 by, 16h-6z (5.1) 
In the viscous wall layer located here, as follows from the second relation (3.5) for 

the similarity variable E, the transverse coordinate #- (-@'I*. As a result, we have 

ya = 1 br,, 1111 h-‘/q (5.2) 
Since q ff Ja, then 

$,s = 1 b,,, I”/# A-“GJ, (5.3) 

We can arrive at the same estimate by noting that the term with #" on the right-hand 
side of (3.5), which has played the role of a small disturbance, becomes of the order of the 
basic solution (the terms P/3 (ps , #*) give To,start to higher appoximations) . This conclusion 
is confirmed by comparing the terms with *a1 , s:z in expansion (4.2) for the main thickness 
oftheboundary layer. 

Substituting (5.1) into the second of (3.3), we obtain the definition 

pr = 1 b,,, I’/* h-‘$ (5.4) 
of the excess pressure. Now, all the variables, both independent and required, are expressible 
in terms of the parameters lb~,,l and h. 

On referring it to the new variables, the Prandtl Eq.(3.2) becomes 

ti a* ti ad a* dB -____=ai”-dZ ag azag az ap 45.5) 

where there are no terms with small coefficients. The initial conditions are obtained for it 
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by union of the stream function $((.z, Y) with q3 (I~, Ya) and of the pressure p (e) with p1 (x1). 
Since the similarity variable E = (-Z)-"aY remains invariant under affine transformation (i;.l), 
(5.2), the conditions 

q-f r/Q2 + (- 5)'!~ $'"(E)+ . ., p-, - signb,,, (- 2)"~ +- . . . (kc;) 

which appear as z--t - 00, 5 = const, are the same as those obtained at the input of the boundary 
layer, freely interacting'withthe external potential flow /2, 8, 9/. 

To state the boundary conditions for Eq.(5.5) as Y-t 00, we have to construct the solution 
for the main thickness of the boundary layer in the non-linear domain. In 5, YZ? Q)zr variables 
Eq.(4.1) becomes 

and therefore, in order to integrate it, we can use an asymptotic expansion in powers of 

I b, Ilk. The union with the stream function (4.2) shows that there must be linear and quadratic 
terms in the required expansion. Repeating the arquments of Sect.4 in the liqht of this 
remark, we obtain 

92 = I&’ (ya) + 1 bx,, 1 h-' @' (y,) + 1 bt,,l 2 h-2A (3) $ + . . . 

The term with displacement thickness A represents the eigenfunction of the operator on 
the left-hand side of (5.7), determined by the inertia forces. The choice of A remains 
arbitrary, except that A + BI,, sign bsl,x (-z)‘//. , z --f -co. 

The union of the stream function v (2, Y) I normalized by (5.3), with the solution (5.8) 
for % (5, Yz) , leads to the condition 

which repeats the condition arising at the edge of the viscous wall layer in the domain of 
free interaction /2, 8, 9/. 

It remains to consider the external potential fluid motion, where the transverse 
coordinate Y, has a size of the same order as the longitudinal coordinate. Since s = I by, jeh-@Z 

by (5.11, then also n = 1 bl,,(” h-*y.. Instead of the stream function, it is convenient here to 
operate directly with components u' = /by, I*~%, and u' = 1 br,, I%-*u, of the disturbed velocity 
vector. A complete analysis of the potential motion is beyond the scope of the present paper: 
to see the underlying ideas, we need only quote the condition 

u, = -KdAids for y, = 0, K = R-‘la 1 bt,, Ieshs (5.10) 

which follows fromtheunion with the velocity field in the main thickness of the boundary 
layer. 

The constant K is a similarity parameter, defining the flow mode. with K<l, we obtain 
for the complex velocity the problem of flow past the initial body, since in accordance with 
(5.10) we have ~~(5, O)= 0 to a first approximation. The excess pressure is then found from 
its limiting value at infinity. Hence, p = - sign b:,,(-~)“z+ . . ., whereas the displacement 
thickness A (2) is boundary condition (5.9) remains unknown. It is found during integration 
of Eq.(5.5), which starts as z-t - 00 with the initial distribution for the stream function, 
assigned by the first of relations (5.6). 

Now let K -1. This is the mode of free interaction of the boundary layer /2, 8, 9/. 
Since the function A in (5.10) is not known in advance, the selfinduced pressure p introduced 
by (5.4) is one of the required functions with singular behaviour as z-+--00. The relation 
K-i fixes the connection between basic parameters ) b,,,I and h, specifying the pressure 
gradient and characteristic surface friction in the boundary layer respectively, and the 
Reynolds number R. When h N 1, the coefficient 1 h,, I - R-‘l~a<l, which repeats the.result 
of /2/ for flow past a smooth body. If I bt,, I N 1, then h- Rv=>)l with the consequent 
estimates of sizes s = I by, Ieke (-Z) - R-‘/a, n = R-V. I b,,s 12 x a-ag N R-V, of the wall layer 
in the domain of free interaction, which were obtained in /lO/ in accordance with the previously 
proposed description of the field of preseparatioq flow /ll/. Simple analysis of the solution 
of /ll/ shows that the surface friction 2, in it is subject to the relation K - 1, if h 
is replaced by TV. 

Notice finally that the change of sign of the coefficient of ba,, from positive to negative 
when [ b,,, I - R-‘/l* and h-1 represents a passage from flows with separation from a body of poor 
shape, considered in /2/, to jet flows, in which the free streamlines issue from the ends of 
small arcs or corner points of the body with breaks of the generator. When bl,, > 0, the 
Brillouin-Ville points are located on the surface of the small arcs with end pieces immersed 
in the stagnant zone. Shoktening of the arcs leads to a drop in bt,,, but the case bl,,< R-‘lle 
requires special analysis. If bi/, < 0, there are no Brillouin-Ville points on the arcs. 
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INVESTIGATION OF SELFSIMILAR SOLUTIONS DESCRIBING FLOWS IN MIXING LAYERS* 

V.N. DIYESPEROV 

A complete investigation is made of the selfsimilar solutions of the 
boundary layer equation for the stream function with zero pressure gradient. 
They are a good description of the flow pattern in mixing layers since 
far from the separation point the latter is formed mainly under the effect 
of the boundary conditions and depends slightly on the initial conditions. 
The selfsimilar function @((I;;m)(t is the selfsimilar variable, and m 
the selfsimilarity parameter) satisfies a well-known third-order non-linear 
differential equation. It is successfully reduced to a first-order 
equation /l/, which enables us to investigate the behaviour of all the 
integral curves of (P(E;m) and, in particular, the examination of the 
question of the existence and uniqueness of the solutions of the two- and 
three-point problems that occur in the theory of displacement layers. 
For m=l these are classical problems /2-4/and the Blasius boundary 
layer problem and for m=2 the Goldstein problem for the wake /5/. 
The mixing layer encountered in the theory separations /6-ll/refers to 
the case m~(1,21. The case m=oo occurs in the theory of non-stationary 
separation /12/. 

From the viewpoint of the behaviour of the integral curves, the 
cases m>i and O<m<l differ substantially. For O(m<i their 
pattern is reformed in such a manner that solutions describing the flows 
in mixing layers with reverse velocities do not occur. Examples of the 
latter are given in /13, 14/. 

To a first approximation the flow in a mixing layer is described by the equation for the 
stream function 

For an incompressible fluid h = 1. For a gas h=8/RP (0) in the theory of local 


